Flow Computation and Mass Balance in Galerkin
Finite-Element Groundwater Models

Emin C. Dogrul, P.E."; and Tarig N. Kadir, P.E.2

Abstract: In most groundwater modeling studies, quantification of the flow rates at domain and subdomain boundaries is as important as
the computation of the groundwater heads. The computation of these flow rates is not a trivial task when a finite-element method is chosen
to solve the groundwater equation. Generally, it is believed that finite-element methods do not conserve mass locally. In this paper, a
postprocessing technique is developed to compute mass-conserving flow rates at element faces. It postprocesses the groundwater head
field obtained by the Galerkin finite-element method, and the calculated flow rates conserve mass locally and globally. The only
requirement for the postprocessor to be applicable is the irrotationality of the flow field, i.e., the curl of the Darcy flux should be zero. The
accuracy and the mass conservation properties of the new postprocessor are demonstrated using several test problems that include one-,

two-, and three-dimensional flow systems in both homogeneous and heterogeneous aquifer conditions.
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Introduction

Finite-element methods, particularly the Galerkin finite-element
method (GFEM), are commonly utilized in groundwater model-
ing studies because complex boundaries can be represented more
closely. Generally, the momentum equation, i.e., Darcy equation,
is substituted into the equation of mass conservation, and the
resulting equation is solved for the groundwater head. In most
groundwater modeling studies, quantification of flow rates is as
important as the simulation of the groundwater heads. One reason
for this is that most groundwater basins are divided into political
subdomains such as water districts, counties, or states with differ-
ing strategies of managing their groundwater resources. Simula-
tion of groundwater flow rates between adjacent subdomains
caused by varying management strategies is sometimes the ulti-
mate goal of a modeling study. Another reason is the need to
examine the detailed inflow/outflow components at a subdomain
level during calibration and verification stages of a modeling
study.

When the flow rates are required, the conventional approach is
to postprocess the groundwater head field, computed using
GFEM, by substituting it into the Darcy equation and obtaining
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the flux field. Then, the normal component of the Darcy flux is
integrated over the domain or subdomain boundary to obtain the
flow rates. However, this postprocessing approach has been
shown to generate flow rates that violate local as well as global
mass balances. Yeh (1981) reported global mass balance errors of
up to 30% when the conventional postprocessing method is used.
He suggested that the finite-element approach that is used to
simulate the groundwater head field also be applied to Darcy
equation with the fluxes as the state variables. Although his
method produced better results, test problems still showed mass
balance errors of 2-9% (Yeh 1981). Commenting on Yeh’s work,
Lynch (1984) showed that precise global mass balance can be
achieved in GFEM by proper treatment of the Dirichlet boundary
conditions. He pointed out that the common practice of discarding
Galerkin equations—the discrete version of the conservation
equation—along Dirichlet boundaries violates the mass balance
by requiring that these fluxes be approximated by the conven-
tional postprocessing method. He showed that retaining the Galer-
kin equation at Dirichlet boundaries as the equation for the flux
resulted in precise global mass balance. Similar observations have
been made by other researchers (Carey 1982; Carey et al. 1985;
Hughes et al. 2000; Berger and Howington 2002; Carey 2002). In
fact, the same idea can be used to compute the internal fluxes, i.e.,
once the groundwater head at an internal node is computed with
GFEM, that node can be treated as a Dirichlet boundary and the
Galerkin equation at the node can be solved for the flux (Hughes
et al. 2000; Carey 2002). Cordes and Kinzelbach (1992) used an
alternative postprocessing method where the elements were sub-
divided into patches and individual fluxes for each patch were
computed by assuming that the flow field was irrotational. In their
method, triangular and quadrilateral elements were treated
separately.

The aim of this paper is to develop and test a postprocessor
that uses the groundwater heads computed by GFEM to obtain
flow rates across finite-element faces, i.e., normal flux integrated
along each of the element faces, that do not violate local and
global mass balances. Once flow rates through each of the ele-
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ment faces are computed, flow through the boundary of any sub-
domain can be calculated by summing the flow rates at those
faces that define the boundary. The new postprocessor can be
viewed as a variation of Cordes and Kinzelbach’s (1992) method
with a more rigorous treatment of the irrotationality condition.
The proposed postprocessor is also different from their method in
that the treatment of triangular and quadrilateral elements is uni-
fied into a single procedure.

The proposed postprocessor is developed specifically for the
depth-integrated groundwater equation. This equation is obtained
by assuming that the change in the groundwater head along a
vertical line is negligible, and integrating the three-dimensional
conservation equation along the vertical axis (Bear 1988). Even
though the method is developed and tested for the depth-
integrated groundwater equation, the theory behind it is general
enough to be applied to any form of the groundwater equation. As
will be stated later, the only requirement is the irrotationality of
the flow field which physically suggests that the curl of the Darcy
flux is zero and that a velocity potential exists (Bear 1988).

Mathematical Development

The depth-integrated conservation equation for groundwater flow
can be written as

Sa—h+V = (1)
o a=/

where S=storativity (specific yield for an unconfined
aquifer and storage coefficient for a confined aquifer)
(dimensionless); h=h(x,y,)=groundwater head [L]; q=g¢.e,
+q,ey=depth-integrated Darcy flux, or simply flux, in vector form
with e, and e, being the unit vectors in the x and y lateral direc-
tions, respectively [L2/T]; f=source/sink term [L/T];
V=(d/dx)e,+(d/ dy)e,=del operator (1/L); and t=time [T]. In
Eq. (1), f=f(h,x,y,t)=general source/sink term that may be a
combination of point sources (e.g., pumping and injection wells),
distributed sources (e.g., recharge from an overlaying vadose
zone); and head dependent sources (e.g., tile drains, stream—
groundwater interaction).
Using the Darcy’s law, q can be represented as

q=-TVh 2)
and

T=K[min(h,z,) — z,] (3)

where T=aquifer transmissivity [L?/T]; K=K(x,y)=hydraulic
conductivity [L/T]; and z, and z,=top and bottom aquifer eleva-
tions [L], respectively. Eq. (3) represents transmissivity for both
confined and unconfined aquifers.

Integrating Eq. (1) in a weak sense (Allen et al. 1988) for an
arbitrary domain (), using the Green’s theorem and rearranging
the resulting expression gives

oh
J —q~nvdl“=f6vdr=f (S—v—q~Vv—fv>dQ 4)
r r ol

where v=v(x,y)=an admissible test function; I'=boundary sur-
rounding the domain {); n=outward unit vector perpendicular to
I'; and 6=—q-n=flux normal to I". Based on the boundary con-
ditions, I' can be divided into Dirichlet boundary, I',, where
groundwater head is specified and Neumann boundary, 1"y, where
normal flux, 6y, is specified. After expressing the boundary inte-

gral in Eq. (4) as the summation of integrals over the Dirichlet
and Neumann boundaries and substituting Darcy’s law into Eq.
(4), the exact normal flux at the Dirichlet boundary, 6, satisfies
the following equality:

Jh
f 6DvdFD=f (SEU+TVh-Vv—fv>dQ—f Oyodly
Ip Q Ty

(5)

Eq. (5) is the weak formulation of the groundwater conserva-
tion equation on which GFEM is based. It should be noted that
even though the exact normal flux, 6p, at the Dirichlet boundary
appears in Eq. (5), no information can be deduced as to its func-
tional form. The left-hand side of Eq. (5) actually represents the
net flow through the Dirichlet boundary in a weak sense.

In GFEM, a set of basis functions, {w,}, on a discretization of
) are used as the test functions, and the head is approximated as
(Allen et al. 1988)

h=2 h{)o(x.y) (6)

i=1

where m=number of nodal points based on the discretization. In
the remainder of this mathematical development it will be as-
sumed that the basis functions used in Eq. (6) are linear Lagrange
basis functions since they are a typical choice in most GFEM
applications. Substituting Eq. (6) into Eq. (5) and using the basis
functions as the test functions, one can express the flow through a
section of the Dirichlet boundary associated with boundary node
i, Q;, as follows:

Q= f Opw; dl'p
I

D

m (Qh m
= fg (Su)iz 71(1)]»+ TE thmj-Vu),»—fwi>dQ

Jj=1 Jj=1
i:1,...,mD (7)

where mp=number of boundary nodes that are specified as Di-
richlet nodes. Only one type of boundary condition, either Dirich-
let or Neumann, can be specified at a node. Since Eq. (7) repre-
sents the flux integral at a Dirichlet boundary node, the term that
represents the flux integral over the Neumann boundary, I'y, does
not appear in Eq. (7).

During the application of GFEM, further modifications on Eq.
(7) are performed: a mass lumping technique may be applied on
the time derivative (Allen et al. 1988); the time derivative may be
discretized using finite difference method; transmissivity may be
approximated as a piecewise constant over elements, as an ex-
pression similar to the one given in Eq. (6) or simply as a constant
over the entire domain. Regardless of the specific modifications,
Eq. (7) is the expression for groundwater flow at the Dirichlet
boundary nodes that is consistent with the GFEM. 1t is, in fact,
the Galerkin equation at the Dirichlet boundary that must be re-
tained as the flow equation (Lynch 1984). During the application
of GFEM, the right-hand side of Eq. (7) is evaluated to compute
the groundwater heads. The calculation of the flow at the Dirich-
let boundary nodes using Eq. (7) requires a small amount of com-
putation time and the mass balance obtained by using these flows
is accurate up to the machine precision (Hughes et al. 2000).

Eq. (7) is written for an arbitrary domain, ), and its enclosing
boundary, I". Therefore, it is valid for any collection of elements:
the set of all elements that approximate the entire model domain,
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(b)

Fig. 1. Descriptive schematics of: (a) discretizations of global
domain and two subdomains; (b) enlarged view of vicinity of node i

a subset of these elements or even an individual element. Fig. 1(a)
depicts an example discretization of global domain, (},, and two
groups of elements that represent subdomains, ), and (),, and
their respective enclosing boundaries I',, I';, and I';. When Eq.
(7) is written for any of the subdomains, the head values at the
subdomain boundary nodes that are obtained from the application
of GFEM can be treated as Dirichlet boundary nodes. Then, Eq.
(7) produces the flows at the boundary nodes of the subdomains
Q, and Q,. As such, Eq. (7) is a postprocessing technique for the
recovery of the boundary flows based on the nodal head values
and it is consistent with the GFEM approximation.

The aim of this paper is to utilize Eq. (7) to compute flows
through each of the element faces of the finite-element grid so
that a precise mass balance for arbitrarily defined collections of
elements as well as the flows between adjacent element collec-

tions can be computed. To achieve this, however, Eq. (7) alone
cannot be used and it is necessary to utilize further information
such as the irrotationality of the flow field. To demonstrate this
point, node i in Fig. 1(a), which lies between two subdomains,
will be considered. Fig. 1(b) shows an enlarged view of the vi-
cinity of node i and the corresponding patch with e, and e, as the
elements that belong to subdomains 1 and 2, respectively. Patch i
in Fig. 1(b) is constructed by connecting the lines that perpen-
dicularly cross element faces at midpoints. When Eq. (7) is writ-
ten for element e; at node i, it represents the flow through the
section of the element boundary that is associated with node i
[i.e., the section that extends from the midpoint of the element
face on one side of node i to the midpoint of the face on the other
side of the node, see Fig. 1(b)]

Oi'=| FdQ1=0,-0; (8)

04

where Q¢'=net flow that crosses the section of the boundary of
element e, associated with node i; F,=integrand in Eq. (7);
Qf¢t=domain of element e;; Q;;=flow through half of the inter-
face between elements e; and e,; and Q;,=flow through half of
the interface between elements e, and e,, as depicted in Fig. 1(b).
The domain of the integral in Eq. (8) is taken to be the domain of
element e}, ¢!, to be consistent with the GFEM where the inte-
grals are evaluated over individual elements. Since the exact nor-
mal flux expressed as a function of distance along the faces of
element ¢, is not known, Q; and Q;, cannot be determined di-
rectly; Eq. (8) represents a single equation with two unknowns.
Writing Eq. (7) also for element e, at node i produces two equa-
tions with three unknowns, namely Q,,, O;,, and Q, ;. Finally,
expressing Eq. (7) for all the surrounding elements of node i
generates four equations with four unknowns but the resulting
system of equations is underdetermined, i.e., one of the equations
in the system is a linear combination of the rest

-1 1 0 0 |]o, o

0 -1 1 0 1]0Qi 0;?

0 0 -1 1 [los|[ "o

I 0 0 -1/{(Qis (o)

To close the system of equations, irrotationality of the flow
field will be assumed. Similar approaches have also been taken by

Cordes and Kinzelbach (1992), and Chou et al. (2004). The irro-
tationality of the flow field can be expressed as

)

ag, gy .
V><q=;ql—%=v-q=o (10)
X

where q*=qyex—qxey. Writing Eq. (10) in a weak sense using the
basis functions and applying the Green’s theorem gives

Qj=fq*-nmidr=f T, (hV'w;-Vo)dQ i=1,...,m
T QO

=

(1)

where Qf:circulation at node i (Bear 1988) and V"=(d/dy)e,
—(d/dx)ey. Since q°-n=q-ny, where np=unit tangent at the
boundary in a counterclockwise direction, Eq. (11) represents the
line integral of the tangential flux at the boundary, I'. The evalu-
ation of Eq. (I11) requires the additional computation of the
integral
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f V*mi-ijdQ ij=1,....,m (12)
Q

where it is assumed that the transmissity is approximated so that
it can be taken out of the integral. Regardless of the approxima-
tion of the transmissivity, the integral in Eq. (12), or any variants
of it due to a particular approximation, needs to be computed only
once at the beginning of the simulation.

Adopting the convention where the counterclockwise direction
is positive and writing Eq. (11) for element e, at node i [Fig. 1(b)]
gives

0 =f G;dQ* = Q;,-0;, (13)
Q¢

where Q;“!=integral of the tangential flux along the part of the
patch boundary that lies in element e, [Fig. 1(b)]; G;=integrand
in Eq. (11); Ql ,=integral of the tangential ﬂux along half of the
interface between elements e, and e,; and Q 1=integral of the
tangential flux along half of the interface between elements e, and
e,. Similar to Eq. (8), the domain of the integral in Eq. (13) is
taken to be the domain of element ¢, to be consistent with the
GFEM. Since the circulation about any closed curve at any loca-
tion in an irrotational flow has to be zero (Bear 1988), Q;*! coun-
terbalances the integral of the tangential flux along the faces of
element ¢, that fall in patch i, i.e., QZZ—QZI. When Eq. (11) is
written at internal nodes, the basis functions vanish at the global
boundary and Q; becomes zero. This result is consistent with the
theory that the circulation about a closed curve in an irrotational
flow is zero. On the other hand, a closed curve around a boundary
node cannot be specified, and expressing Eq. (11) at a boundary
node produces a nonzero value.

To utilize Eq. (11) as a closure to the system of equations
listed in Eq. (9), it is necessary to express the components of the
circulation, sz’ in the patch in terms of the flow terms, Q; . For
this purpose, it will be assumed that the normal flux at the ele-
ment face that falls in the patch is constant and Q;; can be ex-
pressed in terms of this normal flux. For instance, Q; ; in Fig. 1(b)
can be used to express the constant normal flux at the half of the
interface between elements e; and e,

A L, .
Q,.J:fr B dl =0, ) w;dl =0 . 2“‘ (14)

ep.ey ep.ey

or

2
eel ey L_Qi,l (15)

e,y

where 6’ o, = CONStant patch flux normal to the element face that
falls into patch i; Fel,e 4=entire interface between the two ele-
ments; and L, , =total length of the interface. As noted earlier,
Eq. (15) is obtained assuming that the linear Lagrange basis is
used for w;. A similar expression can be written for the normal
flux at the interface between elements e¢; and e, that falls into

patch i [Fig. 1(b)]

2

921,e2 = L_Qi,2 (16)

e,ey

Next, it will be assumed that the patch flux normal to the
element face is equal to the flux that is tangent to the patch
boundary, and it is spatially constant along the corresponding side
of the patch. For example, in Fig. 1(b) 6! e is assumed to be the

e

flux tangent to the side of the patch with length &,. Similarly,
62 “ is assumed to be the flux tangent to the side of the patch
W1th length &, [Fig. 1(b)]. Finally, using the expressions for the
tangent fluxes the irrotationality at an internal node can be written

as

2
Z ng,k (17)

k—l

where c¢;=number of element faces that connect at node i;
L;,=length of the element face k; and &;,=length of the patch
boundary that crosses element face k perpendicularly. Eq. (17)
corresponds to Eq. (11) where the tangent fluxes are approxi-
mated in terms of normal fluxes, as described above.

For a boundary node a closed curve cannot be specified and
application of Egs. (11) and (17) generates a nonzero value

2 5oL -
EEQ,,(—] T, (hV'w; Vo,)d (18)
Q

k=1 Lik j=1

The right-hand side of Eq. (18) can be computed by using the
head and transmissivity values obtained by solving Eq. (1) using
GFEM.

Replacing the last equation of the system described in Eq. (9)
by Egs. (17) and (18) for internal and boundary nodes, respec-
tively, produces a well-posed set of equations that can be solved
very efficiently. The system of equations is defined for each node
and can be solved locally independent from the equation systems
defined for other nodes. For an element face identified with nodes
i and j, two flow terms will be computed: one for node i that
crosses through half of the element face located in patch i, and the
other for node j that crosses the other half of the face located in
patch j. Once the two flow terms are computed they can be
summed to obtain the net flow through the entire element face
defined by nodes i and j. The above procedure is applicable when
either triangular or quadrilateral or both types of elements are
used to discretize the domain.

The preceding mathematical development assumes that the
flow is irrotational. It can be shown that the depth-integrated con-
servation Eq. (1) always satisfies the irrotationality condition
(Bear 1988). Therefore, utilizing the above approach can be used
under any circumstances as long as Eq. (1) is used to model the
groundwater flow.

Verification

The mass-conserving aspect and the accuracy of the proposed
postprocessor [i.e., system of Egs. (9) with the last equation re-
placed by Egs. (17) and (18) for internal or boundary nodes,
respectively] are demonstrated by comparing the simulated flow
rates to their exact counterparts for several test problems. Inte-
grated water flow model (IWFM), a quasi three-dimensional
finite-element groundwater model maintained by the State of
California Department of Water Resources (CADWR 2005), was
used in these test problems.

Example 1

The first example is a one-dimensional problem which deals with
the radial flow to a well that fully penetrates a confined aquifer
with a uniform thickness of 100 m. The aquifer is homogeneous,
isotropic, and has an infinite extent. The hydraulic conductivity
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Fig. 2. Mass balance for subdomain with 60 m radius in Example 1

and the specific storage of the aquifer are 2.3X 107> m/s and
7.5X107% m™!, respectively. The well diameter is small and the
storage in the wellbore can be neglected. The pumping rate is
constant at 0.04 m’/s. The exact expression for the flow at a
distance from the well can be obtained by substituting the ground-
water head computed by the Theis method (Theis 1935) into the
Darcy equation.

Because of its symmetric nature, the system was simulated
only in a single quadrant of the domain using nonuniform grid
spacing. For purposes of numerical simulation the infinite extent
of the aquifer was approximated by setting specified head bound-
ary conditions at 20,000 m away from the well. In the angular
direction the quadrant was discretized into eight equal regions.
The grid spacing in the radial direction was increased at specified
intervals as the distance from the well increased. For distances of
0-200, 200-2,000, and 2,000—20,000 m from the well, the grid
spacing was 10, 100, and 1,000 m, respectively. The initial
groundwater head and the specified head at the boundary were
each set to 150 m (i.e., artesian conditions). The simulation pe-
riod was 1 day with 10 s time steps. To demonstrate the ability of
the proposed postprocessor to conserve mass locally, a circular
subdomain with 60 m radius around the well was defined, and the
flow terms that were used in checking the local mass balance
were simulated. Since the system was simulated only in a single
quadrant of the domain, the results were multiplied by 4 to obtain
the final flow values.

Fig. 2 shows the rate of change in storage, and inflow and
outflow components at the subdomain as well as the mass balance
error. For a mass conserving method, the sum of the rate of
change in storage and the flow through the circular boundary of
the subdomain (located at a 60 m radius from the well) less the
pumping rate should be zero. The simulated flow rate through the
subdomain boundary shown in Fig. 2 is computed using the pro-
posed postprocessor. Inflows are shown as positive and outflows
are shown as negative values. It can be seen in Fig. 2 that the
mass balance error for the subdomain is essentially zero for the
entire simulation period demonstrating local mass conservation.
That is, flow rates computed by the proposed postprocessor sat-
isfy the local mass balance.

For a visual inspection, the exact flow rate through the subdo-
main boundary is also depicted in Fig. 2. As can be seen, the
difference between the exact and the simulated flow rates at the
subdomain boundary is undetectable.

water table

1 L« I
I 1
no flow _),Aé_
_ jut ¥
B ¥y
L, | BHH
|
HH
y no flow

(b)

Fig. 3. Definition sketch for Example 2: (a) cross section of
heterogeneous aquifer between two lakes; (b) simulation grid (shaded
area represents test subdomain)

Example 2

It has been reported in the literature that as the hydraulic conduc-
tivity varies from one element to the next, the local mass balance
errors in the GFEM become more prominent. The second ex-
ample was designed to test the performance of the proposed post-
processor in heterogeneous aquifer conditions in one-, two-, and
three-dimensional flow systems. The cross section and the plan
view for this example are shown in Figs. 3(a and b), respectively.
An unconfined aquifer lies between two lakes. The length of the
aquifer in the x direction, L,, is 10 km and in the y direction, L,,
is 2 km. The surface elevations of the lakes are constant but dif-
ferent from each other. The east and west side lake elevations are
H,;=200 m and H,=150 m, respectively [Fig. 3(a)]. There is no
flow across the north and south sides of the aquifer [Fig. 3(b)].
The specific yield, S, of the aquifer is 0.25. The finite-element
grid used in the simulation is shown in Fig. 3(b). The grid sizes in
x- and y-directions, Ax and Ay, respectively, are both 200 m. The
dark region that is comprised of four elements in Fig. 3(b) is the
subdomain for which the mass-conserving property of the pro-
posed postprocessor is tested. To simulate heterogeneous aquifer
conditions, each element was assigned a random hydraulic con-
ductivity, K. The randomly heterogeneous hydraulic conductivity
field, hereafter referred to as the “K field,” was assumed log-
normally distributed, uncorrelated, and characterized by its coef-
ficient of variation, pg, defined as

Px="—_" (19)
K

where o and K=standard deviation and the mean of the random

K field, respectively. For all test problems K was taken to be
100 m/day. Although an uncorrelated K field may result in an
unrealistic flow field, the goal is to analyze the accuracy and the
mass-conserving property of the proposed postprocessor when
hydraulic conductivity varies from one element to the next from a
numerical perspective. The results of this analysis should be valid
under any type of heterogeneity and flow conditions. Similar
studies with uncorrelated K fields have also been reported in the
literature (e.g., Durlofsky 1994).
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Table 1. Inflow and Outflow Rates Computed by Analytic and Proposed Postprocessor at Domain and Subdomain Boundaries at Different Levels of

Heterogeneity; Outflow Rates Are Shown in Parentheses

Mass balance error

Analytic Postprocessor Error in postprocessor

Pi (m?/day) (m?/day) (%) (%)
Entire domain

0.0 175,000.0 (175,000.0) 175,000.0 (175,000.0) 0.0 0.0
0.5 151,137.2 (151,137.2) 156,092.6 (156,092.6) 33 0.0
1.0 105,068.8 (105,068.8) 114,119.7 (114,119.7) 8.6 0.0
2.0 46,887.1 (46,887.1) 54,753.1 (54,753.1) 16.8 0.0
3.0 24,077.0 (24,077.0) 29,668.3 (29,668.3) 232 0.0
Subdomain

0.0 35,000.0 (35,000.0) 35,000.0 (35,000.0) 0.0 0.0
0.5 30,227.4 (30,227.4) 31,218.5 (31,218.5) 33 0.0
1.0 21,013.8 (21,013.8) 22,821.9 (22,821.9) 8.6 0.0
2.0 9,377.4 (9,377.4) 10,950.6 (10,950.6) 16.8 0.0
3.0 4,815.4 (4,815.4) 5,933.7 (5,933.7) 23.2 0.0

One-Dimensional Problem
For this problem, the aquifer was assumed to be heterogeneous
only in the x direction; i.e., the hydraulic conductivity was varied
for each element in the x direction, but no variation was consid-
ered in the y direction. Since the north and south boundary con-
ditions are symmetric [Fig. 3(b)], the flow between the two lakes
in this case is essentially one dimensional. The exact expression
for the flux at the steady state of this problem can be expressed as
H, - H;
q= 2—‘1 (20)
2Ax§ X
where Ax=200 m=grid spacing in x direction; ns=50=number
of elements in the x direction; and K;=realization of the random
K field assigned to the ith element. H, and H,=specified head
boundary conditions as defined earlier [Fig. 3(a)]. The perfor-
mance of the proposed postprocessor to compute the element face
flows and maintain local and global mass balances was tested for
several degrees of heterogeneity with py taken as 0.0 (homoge-
neous case), 0.5, 1.0, 2.0, and 3.0.

Table 1 shows the inflow and outflow rates at the boundaries
of the entire domain and the subdomain computed by the analytic
expression (20) and the proposed postprocessor. The subdomain
used in this problem is depicted as the black region comprised of
four elements in Fig. 3(b). The deviations of the flow rates com-
puted by the proposed postprocessor from the analytic solutions
are also listed in Table 1 as % errors. The last column lists the
mass balance error generated by the proposed postprocessor.

The mass balance error in the proposed postprocessor is zero
at all levels of heterogeneity both for the entire domain and the
subdomain; i.e., the inflow and outflow rates are equal and the
mass is conserved at both global and local scales (Table 1). On
the other hand, the difference between the flow rates computed
analytically and by the proposed postprocessor increases as the
heterogeneity increases. This behavior can be attributed to
the accuracy of the simulated groundwater heads with respect to
the level of heterogeneity. The accuracy of the flow rates can be,
at best, as good as the accuracy of the simulated heads since they
are computed by postprocessing the head values. Fig. 4 shows the
logarithm of the RMS of the normalized head error vector and the
normalized error for the simulated inflow rates for the subdomain,
versus the level of heterogeneity. Note that the error values for the

inflow and outflow rates at the boundary of the entire domain are
the same as those at the boundary of the subdomain (Table 1).
Therefore, only the flow errors at the subdomain level are consid-
ered in the following analysis. The RMS of the normalized head
error vector is defined as

21)

where ni=total number of nodes; hai=analytic head solution at
the ith node; and h,=head at the ith node simulated by the
GFEM. The normalized flow error is defined as the ratio of the
difference between the simulated and the analytic flow to the
analytic value. It can be seen in Fig. 4 that the error in the simu-
lated flow almost parallels the error in the simulated head, al-
though the flow error is about 1.5 orders of magnitude larger than
the error in head.

The degradation of the accuracy of the simulated heads, and
consequently the accuracy of the postprocessed flow rates, at a
fixed grid resolution as the heterogeneity increases is common to
all numerical methods. The increase in the heterogeneity in-
creases the local head gradients, decreasing the accuracy of the
simulated heads when the grid resolution is coarse. For instance,
in the current example the maximum head gradient at px=3.0 is

-0.5 =
-1.0 4
S
o -1.54 -~ Groundwater head
S
w —— Inflow at sub-domain
o
S 204
-2.5 -
-3.0 T T T T T 1
0.0 0.5 1.0 15 2.0 25 3.0

PK

Fig. 4. Comparison of errors in simulated head and postprocessed
flow rate at different levels of heterogeneity
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Fig. 5. Log-log plot of flow error versus grid size for pg=1.0

6.6 times larger than the maximum head gradient at px=0.5 [the
maximum head gradient actually occurs where the subdomain is
located; see Fig. 3(b)]. It is a common practice in numerical stud-
ies to increase the grid resolution where large head gradients are
expected to obtain more accurate simulation results. This practice
is based on the fact that the results of a consistent numerical
method will converge to the exact solution with a rate equal to the
order of accuracy of the numerical method as the grid resolution
is refined (Allen et al. 1988).

In the light of the above discussion, the initial grid resolution
was refined progressively by halving the grid spacing both in x
and y directions, and the flow rates were computed using the
proposed postprocessor for px=1.0 to check the order of accuracy
of the postprocessor. Fig. 5 shows the logarithm of the grid size
versus the logarithm of the normalized inflow error at the subdo-
main boundary at three grid resolutions (200, 100, and 50 m)
along with the least-squares regression line that fits the computed
error values best. The order of accuracy of the postprocessor can
be estimated by the slope of the regression line, i.e.,
(log error)/(log Ax). Fig. 5 suggests that the proposed postproces-
sor to compute element face flows has an order of accuracy of
around 1.4. This means that the grid can be refined at parts of the
domain where more accurate flow rates are required. The decrease
in the error (i.e., difference between the exact and the simulated
flow rates) will be proportional to (Ax./Ax,)'*, where Ax, and
Ax,=initial and refined grid resolutions, respectively. In a ground-

water modeling study, anticipating that highly heterogeneous
aquifer conditions are likely to lead to less accurate flow rates,
one can increase the grid resolution at highly heterogeneous lo-
cations of the domain. For instance, based on the % error values
listed in Table 1, a grid resolution of approximately 50 m, com-
pared to 200 m, would be required in the case of pg=3.0 to
achieve flow rate accuracy similar to that of pg=0.5.

Two-Dimensional Problem

For this problem, each element shown in Fig. 3(b) was assigned a
realization of the uncorrelated K field with pg=3.0. The hetero-
geneity in both x and y directions led to the two dimensionality of
the flow field. The analytical solution cannot be obtained for this
problem. Therefore, MODFLOW, a three-dimensional finite dif-
ference groundwater model (McDonald and Harbaugh 1988), at a
high grid resolution was used to approximate the exact flow rates
to be compared to those obtained by the proposed postprocessor.
The finite difference mesh used with MODFLOW was refined
until the change between the flow rates computed at two succes-
sively refined mesh systems was negligible. This was achieved at
6.25 m finite difference grid spacing where the flow rates at the
domain and subdomain levels changed 0.3 and 0.5%, respec-
tively, compared to the flow rates computed at 12.5 m grid spac-
ing. In the rest of this document, the exact solutions approximated
by MODFLOW will simply be referred to as “exact solutions.”
Table 2 shows the inflow and outflow rates at the domain and
subdomain boundaries computed by the proposed postprocessor
compared with the exact counterparts at different grid resolutions.
The last column of Table 2 shows that the postprocessor con-
serves mass both at domain and subdomain levels. It is also
apparent that the % error in flow rates decreases as the finite-
element mesh is refined [see Error (%) columns in Table 2]. It can
be shown that the order of accuracy of the proposed postprocessor
is 1.5 and 1.4 when computed based on the error (%) values listed
in Table 2 for the entire domain and the subdomain, respectively.
These results are consistent with the findings of the one-
dimensional problem.

Three-Dimensional Problem

For this problem, the aquifer shown in Fig. 3(a) was discretized
into three 70-m-thick layers in the vertical direction. All three
layers were discretized laterally using the finite-element mesh
shown in Fig. 3(b). An initial grid resolution of Ax=Ay=200 m

Table 2. Comparison of Inflow and Outflow Rates Computed by Proposed Postprocessor to Exact Values at Domain and Subdomain Levels at Different

Grid Resolutions when pg=3.0; Outflow Rates Are in Parentheses

Mass balance

error in
A, Exact Postprocessor Error postprocessor
(m) (m*/day) (m*/day) (%) (%)
Entire domain
200 96,723.3 (96,723.3) 117,794.7 (117,794.7) 21.8 0.0
100 96,723.3 (96,723.3) 105,114.5 (105,114.5) 8.7 0.0
50 96,723.3 (96,723.3) 99,730.9 (99,730.8) 3.1 0.0
25 96,723.3 (96,723.3) 97,697.0 (97,697.0) 1.0 0.0
Subdomain
200 19,407.8 (19,407.8) 25,061.1 (25,061.1) 29.1 0.0
100 19,407.8 (19,407.8) 21,833.3 (21,833.3) 12.5 0.0
50 19,407.8 (19,407.8) 20,346.3 (20,346.3) 4.8 0.0
25 19,407.8 (19,407.8) 19,727.3 (19,727.3) 1.7 0.0
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Table 3. Comparison of Flow Rates at Boundary of Subdomain Located in Middle Aquifer Layer Computed by Postprocessor to Exact Values when

px=3.0
Ax=200 m Ax=50 m
Exact Postprocessor Error Postprocessor Error
Flow type (m3/day) (m3/day) (%) (m3/day) (%)
Inflows (m?/day)
Horizontal 12,961.8 15,815.2 22.0 13,625.3 5.1
From upper layer 83.4 243.3 191.9 89.4 7.3
From lower layer 771.6 462.6 —-40.0 714.8 -74
Total 13,816.7 16,521.1 19.6 14,429.6 44
Outflows (m?/day)
Horizontal 13,160.2 16,061.8 22.0 13,830.9 5.1
To upper layer 406.3 458.9 12.9 410.1 0.9
To lower layer 250.2 0.5 -99.8 188.6 -24.6
Total 13,816.7 16,521.1 19.6 14,429.6 4.4
Mass balance error (%) 0.0 0.0 n/a® 0.0 n/a

“n/a=not applicable.

was used. This led to a total of 1,683 nodes (561 nodes in each
layer) and 1,500 elements (500 elements in each layer). Individual
elements of each aquifer layer were then assigned a realization of
the random K field with pg=3.0. Boundary conditions were the
same for each layer; i.e., H;=200 m, H,=150 m, and no flow
boundary conditions at the south and north sides of the layers
(Fig. 3). The exact flow rates were again approximated using
MODFLOW (McDonald and Harbaugh 1988) at 6.25 m finite-
difference grid resolution.

For this problem, the subdomain depicted as the black region
in Fig. 3(b) was defined for each layer in the vertical direction.
With this setting, each subdomain received vertical flows as well
as horizontal flows. Similar to one- and two-dimensional prob-
lems, the finite-element grid was refined progressively to analyze
the accuracy of the proposed postprocessor. As an example, Table
3 shows a comparison of simulated flow rates for the subdomain
located in the middle layer computed at 200 and 50 m grid reso-
Iutions to the exact values. The total simulated inflows are equal
to the total simulated outflows demonstrating that the proposed
postprocessor also conserves mass in three-dimensional flow
fields. The decrease in the errors (%) [see Error (%) columns in
Table 3] when the grid spacing is refined is consistent with the
findings of the one- and two-dimensional test problems: the ac-
curacy of the flow rates can be increased by refining the grid
resolution.

Conclusion

In this paper a postprocessing method to recover the flow rates at
element faces based on the groundwater head field computed by
the GFEM has been developed and its accuracy has been tested
for a set of problems. The test problems included a one-
dimensional unsteady flow system in homogeneous aquifer con-
ditions, and one-, two-, and three-dimensional steady flow
systems with varying levels of aquifer heterogeneity. The pro-
posed postprocessor is applicable as long as the flow is irrota-
tional. It utilizes the expression for flow that is consistent with the
GFEM leading to flow rates that produce precise mass balance
locally, as well as globally, at all levels of aquifer heterogeneity
and grid resolution. The order of accuracy of the new postproces-
sor has been shown to be around 1.4. With the flow rates correctly
computed at each element face, the new postprocessor allows the

mass balance checks at subdomain level as well as at the entire
domain. With the proposed method, modelers can quantify the
flow rates between adjacent subdomains and study the effect of
water management strategies utilized in an individual subdomain
on the adjacent subdomains, all in the context of GFEM.

Notation

The following symbols are used in this paper:

f = general source/sink term;

h; = groundwater head at node i;

K = hydraulic conductivity;

L;; = length of element face k at node i;

n = unit outward vector that is perpendicular to boundary;
np = unit tangent at boundary in counterclockwise direction;
Q¢ = net flow that crosses boundary of patch i in element e;
Qf = circulation at node i;

q = depth-integrated flux vector;

q" = vector that is equal in magnitude to that of
depth-integrated flux vector and perpendicular in
direction;

= storativity;

aquifer transmissivity;

boundary that surrounds problem domain;

normal flux at boundary;

&, = length of patch boundary that crosses element face k

perpendicularly;

) = arbitrary domain over which groundwater conservation

equation is expressed weakly; and

w; = basis function at node i.

@ FINn»
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